Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Bohari M. Yamin,* Noor Azilah Kasim and Ezuanita Akhiar

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

Correspondence e-mail:
bohari@pkrisc.cc.ukm.my

Key indicators

Single-crystal X-ray study
$T=273 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.044$
$w R$ factor $=0.122$
Data-to-parameter ratio $=16.6$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

5-Acetyl-4-methyl-2-(o-toluidinyl)-1,3-thiazole

In the title compound, $\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$, the benzene and thiazole rings make a dihedral angle of $73.44(10)^{\circ}$. The intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds link the molecules into centrosymmetric dimers. The crystal packing is further stabilized by van der Waals forces.

Comment

In the title molecule, (I) (Fig. 1), all bond lengths and angles are in normal ranges (Allen et al., 1987). The geometry of the thiazole ring (Table 1) is close to that observed in its trisubstituted analogue methyl 2-amino-isopropyl-1,3-thiazole-4carboxylate (Kennedy et al., 2004). The S1/C8/N2/C9/C10/N1/ C13 moiety and the C11/C12/O1 acetyl group are essentially coplanar, with a maximum deviation of 0.009 (2) A for atom N 1 . The dihedral angle between the thiazole ring and the acetyl fragment is $9.15(14)^{\circ}$. The benzene and thiazole rings make a dihedral angle of $73.44(10)^{\circ}$. In the molecule, there is a weak intramolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond (Table 2). Intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds (Table 2) link the molecules into centrosymmetric dimers, arranged parallel to the $a c$ face. The crystal packing (Fig. 2) is further stabilized by van der Waals forces.

(I)

Experimental

A solution of o-toluidine $(1.34 \mathrm{~g}, 0.01 \mathrm{~mol})$ in acetone $(50 \mathrm{ml})$ was added dropwise to an acetone solution (50 ml) containing an equimolar amount of 3-chloroacetylacetone and ammonium thiocyanate in a two-necked round-bottomed flask. The solution was refluxed for about 1 h . The light-yellow solution was filtered and some colourless crystals were obtained after 5 d of evaporation (yield 80%, m.p. 442.8-442.1 K). ${ }^{1} \mathrm{H}$ NMR: $\delta 2.34$ (3H, $s, \mathrm{H}-7$), 2.46 ($3 \mathrm{H}, s, \mathrm{H}-13$), 2.40 (3H, $s, \mathrm{H}-12), 10.10(\mathrm{H}, s, \mathrm{NH}-2), 7.22-7.50\left(\mathrm{CH}\right.$ aromatic, 2-5); ${ }^{13} \mathrm{C}$ NMR: $\delta 17.8$ (C13), 18.3 (C7), 29.9 (C12), 131.6 (C1), 133.6 (C2), 125.3 (C3), 127.6 (C4), 121.5 (C5), 137.8 (C6), 157.5 (C11), 171.5 (C9), 189.3 (C8).

Received 13 April 2005 Accepted 20 April 2005 Online 27 April 2005
\qquad

Crystal data

$\mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=246.32$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=10.797$ (2) A
$b=11.571$ (2) A
$c=12.0982(16) \AA$
$\beta=123.576(11)^{\circ}$
$V=1259.3$ (4) \AA^{3}
$Z=4$

$D_{x}=1.299 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation
Cell parameters from 871
reflections
$\theta=2.2-26.5^{\circ}$
$\mu=0.24 \mathrm{~mm}^{-1}$
$T=273$ (2) K
Block, colourless
$0.41 \times 0.40 \times 0.33 \mathrm{~mm}$

Data collection

Bruker SMART APEX CCD areadetector diffractometer
ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.907, T_{\text {max }}=0.924$
6884 measured reflections
2610 independent reflections
2343 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.020$
$\theta_{\text {max }}=26.5^{\circ}$
$h=-13 \rightarrow 8$
$k=-14 \rightarrow 14$
$l=-14 \rightarrow 15$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0659 P)^{2}\right. \\
& \quad+0.3401 P] \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.22 \mathrm{e}^{-3}
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.044$
$w R\left(F^{2}\right)=0.122$
$S=1.08$
2610 reflections
157 parameters
H -atom parameters constrained

Figure 1
View of (I) with 50% probability displacement ellipsoids.

Figure 2
The packing, viewed down the b axis. Dashed lines denote intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds.

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for research grant IRPA No. 09-02-02-0163.

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Kennedy, A. R., Khalaf, A. I., Suckling, C. J. \& Waigh, R. D. (2004). Acta Cryst. E60, o1510-o1512.
Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

